1,699 research outputs found

    Psoriasis, psoriatic arthritis, and rheumatoid arthritis: Is all inflammation the same?

    Get PDF
    AbstractObjectivesTo review the pathophysiology, co-morbidities, and therapeutic options for psoriasis, psoriatic arthritis and rheumatoid arthritis in order to further understand the similarities and differences in treatment paradigms in the management of each disease. New targets for individualized therapeutic decisions are also identified with the aim of improving therapeutic outcome and reducing toxicity.Search strategyUsing the PubMed database, we searched literature published from 2000 to 2015 using combinations of the key words “psoriasis,” “psoriatic arthritis,” “rheumatoid arthritis,” “pathogenesis,” “immunomodulation,” and “treatment.”Inclusion and exclusion criteriaThis was a non-systematic review and there were no formal inclusion and exclusion criteria.Data extractionAbstracts identified in the search were screened for relevance and articles considered appropriate evaluated further. References within these selected articles were also screened. Information was extracted from 198 articles for inclusion in this report.Data synthesisThere was no formal data synthesis. Articles were reviewed and summarized according to disease area (psoriasis, psoriatic arthritis, and rheumatoid arthritis).Headline resultsThe pathophysiology of psoriasis, psoriatic arthritis, and rheumatoid arthritis involves chronic inflammation mediated by pro-inflammatory cytokines. Dysfunction in integrated signaling pathways affecting different constituents of the immune system result in varying clinical features in the three diseases. Co-morbidities, including cardiovascular disease, malignancies, and non-alcoholic fatty liver disease are increased. Increased understanding of the immunopathogenesis allowed development of targeted treatments; however, despite a variety of potentially predictive genetic, protein and cellular biomarkers, there is still significant unmet need in these three inflammatory disorders

    Biomarkers predictive of treatment response in psoriasis and psoriatic arthritis: a systematic review.

    Get PDF
    AIMS: The ability to predict response to treatment remains a key unmet need in psoriatic disease. We conducted a systematic review of studies relating to biomarkers associated with response to treatment in either psoriasis vulgaris (PsV) or psoriatic arthritis (PsA). METHODS: A search was conducted in PubMed, Embase and the Cochrane library from their inception to 2 September 2020, and conference proceedings from four major rheumatology conferences. Original research articles studying pre-treatment biomarker levels associated with subsequent response to pharmacologic treatment in either PsV or PsA were included. RESULTS: A total of 765 articles were retrieved and after review, 44 articles (22 relating to PsV and 22 to PsA) met the systematic review's eligibility criteria. One study examined the response to methotrexate, one the response to tofacitinib and all the other studies to biologic disease-modifying antirheumatic drugs (DMARDs). Whilst several studies examined the HLA-C*06 allele in PsV, the results were conflicting. Interleukin (IL)-12 serum levels and polymorphisms in the IL-12B gene show promise as biomarkers of treatment response in PsV. Most, but not all, studies found that higher baseline levels of C-reactive protein (CRP) were associated with a better clinical response to treatment in patients with PsA. CONCLUSION: Several studies have identified biomarkers associated with subsequent response to treatment in psoriatic disease. However, due to the different types of biomarkers, treatments and outcome measures used, firm conclusions cannot be drawn. Further validation is needed before any of these biomarkers translate to clinical practice

    Apolipoprotein A-I infiltration in rheumatoid arthritis synovial tissue: a control mechanism of cytokine production?

    Get PDF
    The production of tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) by monocytes is strongly induced by direct contact with stimulated T lymphocytes, and this mechanism may be critical in the pathogenesis of rheumatoid arthritis (RA). Apolipoprotein A-I (apoA-I) blocks contact-mediated activation of monocytes, causing inhibition of TNF-α and IL-1β production. This study examined the hypothesis that apoA-I may have a regulatory role at sites of macrophage activation by T lymphocytes in inflamed RA synovial tissue. Synovial tissue samples were obtained after arthroscopy from patients with early untreated RA or treated RA and from normal subjects. As determined by immunohistochemistry, apoA-I was consistently present in inflamed synovial tissue that contained infiltrating T cells and macrophages, but it was absent from noninflamed tissue samples obtained from treated patients and from normal subjects. ApoA-I staining was abundant in the perivascular areas and extended in a halo-like pattern to the surrounding cellular infiltrate. C-reactive protein and serum amyloid A were not detected in the same perivascular areas of inflamed tissues. The abundant presence of apoA-I in the perivascular cellular infiltrates of inflamed RA synovial tissue extends the observations in vitro that showed that apoA-I can modify contact-mediated macrophage production of TNF-α and IL-1β. ApoA-I was not present in synovium from patients in apparent remission, suggesting that it has a specific role during phases of disease activity. These findings support the suggestion that the biologic properties of apoA-I, about which knowledge is newly emerging, include anti-inflammatory activities and therefore have important implications for the treatment of chronic inflammatory diseases

    Comparative genomics of Drosophila and human core promoters

    Get PDF
    BACKGROUND: The core promoter region plays a critical role in the regulation of eukaryotic gene expression. We have determined the non-random distribution of DNA sequences relative to the transcriptional start site in Drosophila melanogaster promoters to identify sequences that may be biologically significant. We compare these results with those obtained for human promoters. RESULTS: We determined the distribution of all 65,536 octamer (8-mers) DNA sequences in 10,914 Drosophila promoters and two sets of human promoters aligned relative to the transcriptional start site. In Drosophila, 298 8-mers have highly significant (p ≤ 1 × 10(-16)) non-random distributions peaking within 100 base-pairs of the transcriptional start site. These sequences were grouped into 15 DNA motifs. Ten motifs, termed directional motifs, occur only on the positive strand while the remaining five motifs, termed non-directional motifs, occur on both strands. The only directional motifs to localize in human promoters are TATA, INR, and DPE. The directional motifs were further subdivided into those precisely positioned relative to the transcriptional start site and those that are positioned more loosely relative to the transcriptional start site. Similar numbers of non-directional motifs were identified in both species and most are different. The genes associated with all 15 DNA motifs, when they occur in the peak, are enriched in specific Gene Ontology categories and show a distinct mRNA expression pattern, suggesting that there is a core promoter code in Drosophila. CONCLUSION: Drosophila and human promoters use different DNA sequences to regulate gene expression, supporting the idea that evolution occurs by the modulation of gene regulation
    corecore